
F
erm

ilab
FE

R
M

IL
A

B
-C

onf-98-412-A
arXiv:astro-ph/9903026 v1   2 Mar 1999

N
e
w
a
n
d
Im

p
ro
v
e
d

S
u
p
e
rstrin

g
P
h
e
n
o
m
e
n
o
lo
g
y

J
o
sep

h
D
.
L
y
k
k
en

T
h
eo
retica

l
P
h
y
sics

D
ep
t.

F
erm

i
N
a
tio

n
a
l
A
ccelera

to
r
L
a
bo
ra
to
ry

P
.O
.
B
o
x
5
0
0
,
B
a
ta
via

,
IL

6
0
5
1
0

A
b
s
t
r
a
c
t

R
ecen

t
d
ev
elo

p
m
en
ts

in
strin

g
th
eory

h
av
e
im

p
ortan

t
im

p
lication

s
for

cosm
olo

g
y.

T
op
ics

d
iscu

ssed
h
ere

are
in


ation

,
th
e
cosm

ological
con

stan
t,

sm
o
o
th
in
g
o
f
cosm

ological
sin

gu
larities,

an
d
d
ark

m
atter

from
p
a
ra
llel

u
n
iverses.

T
alk

p
resen

ted
a
t
th
e
In
tern

ation
al
W
ork

sh
op

on
P
a
rticle

P
h
y
sics

a
n
d
th
e
E
arly

U
n
iverse

(C
O
S
M
O
-98),

15-20
N
ov
,

A
silom

a
r,
M
o
n
terey,

C
A
.

L
o
st

in
(M

o
d
u
li)

S
p
a
ce

T
h
e
d
u
ality

revolu
tion

w
h
ich

occu
rred

d
u
rin

g
th
e
p
ast

�
ve

years
h
as

en
or-

m
ou
sly

ad
van

ced
ou
r
k
n
ow

led
ge

an
d
p
ersp

ectiv
e
regard

in
g
th
e
th
eory

for-
m
erly

k
n
ow

n
as

su
p
erstrin

gs.
T
h
ere

is
n
ow

overw
h
elm

in
g
ev
id
en
ce[1]

to
th
e

e�
ect

th
at

th
ere

is
a
u
n
iq
u
e
strin

g
th
eory

(often
called

M
th
eory

),
w
h
ich

con
-

tain
s,
in

ad
d
ition

to
strin

gs,
a
variety

of
m
em

b
ran

es
an
d
even

p
article-like

ob
jects.

In
a
k
in
d
of

P
lan

ck
ian

d
em

ocracy,
n
on
e
of

th
ese

d
egrees

of
freed

om
can

tru
ely

b
e
regard

ed
as

m
ore

fu
n
d
am

en
tal

th
an

th
e
oth

ers.
In

fact
in

on
e

lim
it
of

th
is
th
eory

(som
ew

h
at

con
fu
sin

gly
called

th
e
M

th
eory

lim
it),

th
e

strin
g
d
egrees

of
freed

om
are

com
p
letely

ab
sen

t.
T
h
is
recen

t
ex
p
losion

of
ou
r

u
n
d
erstan

d
in
g
of

n
on
p
ertu

rb
ativ

e
strin

g
p
h
y
sics

n
icely

com
p
lem

en
ts
th
e
im

-
p
ressive

ed
i�
ce

of
p
ertu

rb
ativ

e
strin

g
k
n
ow

led
ge

b
u
ilt

u
p
d
u
rin

g
th
e
p
rev

iou
s

d
ecad

e.
A
ll
of

w
h
ich

lead
s
to

th
e
ob
v
iou

s
q
u
estion

:

�
If

w
e
k
n
ow

so
m
u
ch

a
b
o
u
t
strin

g
th
eo
ry,

w
h
y
ca
n
't

w
e
p
re-

d
ict

a
n
y
th
in
g
?

1



The main reason for this embarrassing irony is that string theory does not
have a unique (consistent, stable,) ground state. This was known to be true
at the perturbative level for many years, but only recently have we realized
that this disturbing property appears to persist even when we bring to bear
our full arsenal of nonperturbative string dynamics. At low energies string
theory is described (mostly, at least,) by an e�ective �eld theory; without a
de�nite choice for the string vacuum we cannot even specify the degrees of
freedom of this low energy theory, let alone the form or parameters of the
e�ective lagrangian.

The problem is that we are lost in moduli space. The e�ective �eld
theory limit of string theory contains a number of scalar �elds, called moduli,
with 
at potentials. This is not surprising since most known string vacua
preserve some spacetime supersymmetry, and moduli are a generic feature
of supersymmetric �eld theories. We can parametrize a moduli space by the
vacuum expectation values (vevs) of these scalar �elds. As we move around
in this moduli space, the e�ective �eld theory, de�ned by shifting by these
vevs, can vary enormously. Not only are there variations in couplings, but
at special points in moduli space the number and type of light degrees of
freedom changes.

We have only just begun to feel our way around the intricate tapestry
which represents the full moduli space of consistent string vacua. We have
probed around the edges, which represent the various possible perturbative
limits of string theory, as well as the 11-dimensional (non-stringy) M theory
limit. The interior remains largely terra incognita, although string duality
relations help us trace the threads connecting these di�erent limits. We know
neither the dimensionality nor the topology of the full string moduli space.
Nor do we know the connectivity of this space. The tapestry may be very
frayed, with many ragged patches connected to the main body by only a
few threads; there may even be \string islands", points or patches of moduli
space completely disconnected from the main body.

One (at least) of these points ought to correspond to the Standard Model
particle physics and FRW cosmology that we observe at low energies and
long distance scales. But where?
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Moduli and Cosmology

It is not suprising that the existence of moduli �elds has implications for
cosmology. Indeed this is true even for approximate moduli, i.e., scalars
whose 
at potentials are lifted by nonperturbative e�ects. Since the number
and type of moduli vary as we move around in moduli space, most of what
we can say about string cosmology is very dependent on where we think the
string ground state is.

Certain moduli, however, have slightly more robust characteristics. Per-
turbative limits of string theory contain a dilaton, a weakly coupled scalar
whose vev determines the string coupling, and thereby the basic relation-
ships between the Planck scale, compacti�cation scales, and gauge couplings.
These same perturbative limits also contain a pseudoscalar axion, and indeed
axions seem to be generic features of large classes of string vacua. Compact-
i�ed dimensions in string theory can assume a wide variety of geometries;
nevertheless certain features of the modulus describing the \overall" scale of
compacti�cation are somewhat generic.

Another interesting class of moduli for cosmology are what I will call
\invisible" moduli. The vevs of these scalars describe either dimensionless
couplings or new mass and length scales associated with hidden sectors-
exotic matter and gauge �elds which couple only gravitationally to ordinary
matter.

The good news for cosmologists is that string moduli provide natural
candidates for the scalar �elds that may perform some cosmologically impor-
tant tasks. These include the in
aton and perhaps quintessence. The bad
news for cosmologists is that generic regions of string moduli space won't
look good cosmologically. Indeed generically moduli are more likely to be
a cosmological headache than a panacea. The devil, furthermore, is in the
details, and generically these details are diÆcult to tackle.

The dilaton, for example, has properties which make it an attractive can-
didate for the in
aton[2, 3, 4]. The dilaton acquires a nonvanishing poten-
tial only from nonperturbative e�ects; the relative gradient in this potential
is naturally of order the inverse Planck mass, as desired for slow roll in-

ation. On the other hand, there are a number of problems with dilaton
in
ation[5, 6, 7]. Speci�c scenarios require additional assumptions about the
nonperturbative contributions to the potential; these assumptions are hard to
pin down with our current level of knowledge. In many scenarios there is the

3



additional problem that the dilaton kinetic energy dominates the potential
energy. Furthermore, near any of the perturbative limits of string theory, the
dilaton is generically unstable; it's vev wants to run o� to in�nity, producing
an in�nitely weakly coupled theory. One can postulate nonperturbative �xes
for this runaway behavior, but such scenarios are neither rigorous nor robust.

String Islands and the Cosmological Constant

The cosmological constant problem is the most notorious and vexing prob-
lem of quantum gravity[8]. Any attempt to unify quantum mechanics with
gravity leads (at least naively) to the conclusion that quantum 
uctuations
in the vacuum (i.e. zero-point energies) must couple to gravity. Since these
zero-point energy sums are typically divergent, their natural scale in a quan-
tum �eld theory is some ultraviolet cuto� U . One thus expects to generate
a cosmological constant of order

� � U4 ; (1)

and that the entropy associated with a system of linear size L scales like

S � L3U3 : (2)

Note that � is positive if bosonic modes dominate the sum, and negative
if fermionic modes dominate. Supersymmetric vacua have zero cosmological
constant, due to bose-fermi cancellations.

The cosmological constant problem arises because any reasonable choice
for the ultraviolet cuto� scale U leads to a � which exceeds the observational
upper bound by a ridiculously large multiple, roughly 10�100 (here I am
invoking \roughly" as per standard usage in cosmology, meaning order of
magnitude in the exponent). This is because particle physics scales such as
the Planck mass (1019 GeV), the Standard Model Higgs vev (102 GeV), and
the apparent supersymmetry-breaking scale (102� 103 GeV), greatly exceed
the energy scale characterizing the current matter density of the universe
(10�3 eV). This is a disturbing problem, made worse by our desire to allow
a rather large e�ective � during an earlier in
ationary epoch. It should also
be noted that recent ideas about quintessence in no way address the main
cosmological constant problem; rather quintessence models evolve one very
small e�ective � value to another very small e�ective � value.
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String theory, which is (if nothing else) a consistent theory of quantum
gravity, ought to give us some profound insight to this problem. Unfortu-
nately even with recent advances of the duality revolution, the cosmological
constant problem remains a complete mystery even in string theory.

A possible ray of hope is provided by a suggestion of Witten[9], which
ties in nicely[10] to some recent work on the idea of \string islands". Witten
observed that in 2+1 spacetime dimensions you can have supersymmetry of
the vacuum (and thus �=0) without supersymmetry of the spectrum (i.e. no
bose-fermi degeneracy for particles). Furthermore, string theory in 2+1 di-
mensions actually becomes string theory in 3+1 dimensions in the limitwhere
the string coupling (determined by the dilaton vev) goes to in�nity. This pe-
culiar phenomenon is similar to that which leads to the 11-dimensional M
theory limit. The strongly-coupled 2+1 dimensional string theory has light
solitons, which actually behave exactly like a set of light Kaluza-Klein modes.
These solitonic degrees of freedom thus represent the degrees of freedom of
a third spatial dimension compacti�ed on a circle. In the strong coupling
limit the radius of this circle becomes in�nite, and a 3+1 dimensional theory
results.

This suggests a method for �nding non-supersymmetric string vacua with
zero cosmological constant, by starting with 2+1 dimensional string vacua
which contain a dilaton. Note that it is important for this trick that the
2+1 string vacua do not contain any geometrical moduli associated with
compacti�cations from higher dimensions. Such moduli would invalidate the
original argument, leading presumably to a nonzero � whose scale is set by
the square of the bose-fermi mass splittings divided by the compacti�cation
scale; this is too large unless we manage to keep all the mass splittings below
about 100 GeV.

Thus the pure version of this trick requires string islands (peninsula?):
string vacua which contain the dilaton and its axion partner, but do not
contain any geometrical moduli. Surprisingly, such string islands are known
to exist even in the weakly-coupled limit of the heterotic string[11]. There
is, for example, a 3+1 dimensional string vacuum whose low energy limit is
pure 3+1 dimensional N = 4 supergravity. Many more examples have been
constructed recently[12].

I should emphasize that even if one could exhibit string islands corre-
sponding to non-supersymmetric vacua with zero cosmological constant, it
is another matter entirely to show that any such vacuum is consistent with
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the Standard Model. An important conclusion for cosmologists, however, is
that current thinking about making string vacua which are more \realistic"
seems to favor reduced sets of moduli. A broader conclusion is that in the
long run cosmological considerations are likely to play an important role in
resolving mysteries about the vacuum state of string theory.

Delightful D branes

As mentioned above, string theory abounds with membranes of various types
and dimensionalities. Of particular interest are D branes, objects which, con-
sidered as backgrounds for string propagation, preserve part of the underlying
spacetime supersymmetry. D branes have a number of special properties, and
occur with various dimensionalities (thus we have D instantons, D particles,
D strings, and D membranes with up to 9 spatial dimensions). From the
string point of view a D brane is a soliton whose mass (or tension, or mass
per unit volume) is proportional to the inverse of the string coupling gs. This
means, among other things, that D branes become light in those regions of
string moduli space where the string coupling is large.

This simple fact has led to a new interpretation for singularities of various
�xed spacetime backgrounds in which strings propagate. These singularities
are associated with compactifying some of the original 9 or 10 spatial dimen-
sions onto orbifolds, conifolds, or other singular geometries. A D brane can
wrap around a D-dimensional closed cycle of this compact space; when this
cycle is shrunk to a point a singularity appears, associated with the vanish-
ing mass of the wrapped D brane. This observation provides a generic and
physically intuitive mechanism for \smoothing" spacetime singularities.

The obvious question, of course, is whether this D brane smoothing also
applies to cosmological singularities. Recent work suggests that the answer is
yes[13, 14], although perhaps not in all cases[15]. This is an exciting avenue
for future research.

Dark Matter in Parallel Universes

The mass scale at which string physics becomes stringy is known as the string
scale, ms. For the weakly coupled heterotic string, the string scale can be
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shown to be about 1018 GeV, only about an order of magnitude smaller than
the Planck mass, mp. However in other regions of string moduli space the
string scale can be much smaller[16]. Since we don't know where we are in
moduli space, we also don't know the value of ms. The most we can say
at present is that ms is greater than about 1 TeV, due to nonobservation of
stringy e�ects in the Tevatron collider experiments[17].

It is tempting to imagine[17] that perhaps the string scale is not too far
above the current lower bound, in the multi-TeV region which will eventually
be accessible to colliders. If this bold hypothesis is correct, we are immedi-
ately faced with the problem of explaining the small ratio ms=mp. In string
theory this small ratio is presumably related to certain moduli having very
large or very small vevs, as measured in units of ms. If these moduli are \in-
visible" moduli of the type discussed earlier, then their existence may have
no other direct consequences for observable low energy physics.

On the other hand, this small ratio could be a consequence of large com-
pacti�ed dimensions[18, 19], through a scaling relation like

m2

p
� mn+2

s
Rn ; (3)

where R is the size of the large compact dimensions, and n is the number of
such dimensions. For ms of order a TeV and n � 2, R in the above relation
can be as large as 1 mm!

Actually, this form of the large extra dimensions scenario is completely
ruled out by particle physics constraints, unless we make an additional bold
hypothesis: that the entire Standard Model gauge theory is con�ned to live
on a membrane orthogonal to the large extra dimensions. Since D branes
are known to have supersymmetric gauge theories con�ned to their world-
volumes, this hypothesis �ts rather nicely with our current picture of string
theory. If correct, the graviton has many massive Kaluza-Klein copies, but
the Standard Model particles know of the existence of large extra dimen-
sions only through coupling to gravity. There are, not surprisingly, many
interesting cosmological implications of this scenario[19, 20, 21].

One intriguing observation is that, if the Standard Model gauge theory
is con�ned to some con�guration of branes, then there may be other gauge
theories con�ned to other brane con�gurations, separated from us in one or
more of the large extra dimensions. Such hidden sectors are very much like
parallel universes, except that they are gravitationally coupled to the visible
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universe. If these other \brane-worlds" contain stable matter, planets, stars,
galaxies, etc., these will all appear to us as dark matter. Since the laws of
(non-gravitational) physics could be quite di�erent in these parallel worlds,
qualitatively new forms of macroscopic matter may also be produced. It
would be interesting to determine the current observational bounds on (i)
dark \planets" in the vicinity of our solar system, (ii) dark \stars" within
our galaxy and the galactic halo, and (iii) the density and distribution of
dark \galaxies".
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